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Abstract. Using ϕ4 field theory and Monte Carlo (MC) simulation we investigate the finite-size effects
of the magnetization M for the three-dimensional Ising model in a finite cubic geometry with periodic
boundary conditions. The field theory with infinite cutoff gives a scaling form of the equation of state
h/Mδ = f(hLβδ/ν , t/h1/βδ) where t = (T − Tc)/Tc is the reduced temperature, h is the external field and
L is the size of system. Below Tc and at Tc the theory predicts a nonmonotonic dependence of f(x, y) with
respect to x ≡ hLβδ/ν at fixed y ≡ t/h1/βδ and a crossover from nonmonotonic to monotonic behaviour
when y is further increased. These results are confirmed by MC simulation. The scaling function f(x, y)
obtained from the field theory is in good quantitative agreement with the finite-size MC data. Good
agreement is also found for the bulk value f(∞, 0) at Tc.

PACS. 05.70.Jk Critical point phenomena – 64.60.-i General studies of phase transitions

1 Introduction

The scaling equation of state near a critical point provides
fundamental information on the critical behaviour of a
thermodynamic system. For bulk Ising-like systems accu-
rate predictions have been made recently [1] on the basis
of the ϕ4 field theory in three dimensions. Testing these
predictions by Monte Carlo simulations [2] would be of
considerable interest. Such simulations, however, are nec-
essarily made only for finite systems and thus phenomeno-
logical concepts like finite-size scaling [3] are needed to
perform extrapolations from mesoscopic lattices.

In order to test the theory in a more conclusive way it
is desirable to go beyond the phenomenological finite-size
scaling concept and to calculate explicitly the finite-size
effects on the equation of state, i.e., on the magnetization
as a function of the temperature T and external field h in
a finite geometry. Although such field-theoretic calcula-
tions [4–7] are perturbative and not exact they have been
found to be in good agreement with the MC simulations.
So far the calculations of thermodynamic quantities were
restricted to the case of zero external field h. At finite h,
only the order-parameter distribution function was calcu-
lated [8–10]. In the present paper we extend these calcu-
lations to the equation of state of the three-dimensional
Ising model in a finite cubic geometry at finite h. For sim-
plicity these calculations are performed at infinite cutoff
and thus our results neglect lattice effects. The latter have
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been shown [11–13] to yield non-negligible contributions
to the exponential part of the finite-size scaling function.
Here we focus our interest on the universal scaling part of
the equation of state. Our theory predicts non-monotonic
effects in the h dependence of the equation of state which
we then confirm with surprisingly good agreement by stan-
dard Monte Carlo simulations.

The identification of such non-monotonic effects is of
great practical importance. If, for example, the character-
istic temperature Tc(L) of a lattice with L3 sites in three
dimensions varies asymptotically as Tc(L)−Tc(∞) ∝ 1/Ly
with some correlation length exponent y = 1/ν, then a
plot of the numerical Tc(L) versus 1/Ly gives the extrap-
olated Tc(∞) as an intercept. If, however, higher order
terms make the curve Tc(L) non-monotonic, then such a
plot for finite L, where the non-monotonicity is not yet
visible, would give a wrong estimate for Tc(∞). Similar
effects would make estimates of other quantities unreli-
able, and there exist examples of such estimates in the
literature.

2 Field-theoretic calculations

We consider the ϕ4 model with the standard Landau-
Ginzburg-Wilson Hamiltonian

H(h) =
∫
V

[
1
2
r0ϕ

2 +
1
2

(5ϕ)2 + u0ϕ
4 − hϕ

]
(1)
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where ϕ(x) is a one-component field in a finite cube of
volume V = Ld and h is a homogeneous external field.
We assume periodic boundary conditions. Accordingly we
have

ϕ(x) = L−d
∑
k

ϕkeik·x (2)

where the summation
∑

k runs over discrete k = 2π
L m vec-

tors with components kj = 2π
L mj ,mj = 0,±1,±2, ..., j =

1, 2, ..., d in the range −Λ ≤ kj < Λ, i.e., with a sharp cut-
off Λ. The temperature enters through r0 = r0c + a0t, t =
(T − Tc)/Tc.

As pointed out recently [11,12] the Hamiltonian (1) for
periodic boundary conditions with a sharp cutoff Λ does
not correctly describe the exponential size dependence of
physical quantities of finite lattice models in the region
ξ � L. Instead of (1), a modified continuum Hamiltonian
with a smooth cutoff [12] would be more appropriate. Even
better would be to employ the lattice version of the ϕ4 the-
ory to describe the lattice effect on the finite-size scaling
variable of finite Ising models in the region L > ξ. In the
present paper, however, we shall neglect such effects by
taking the limit Λ→∞ (see below).

The fluctuating homogeneous part of the
order-parameter of the Hamiltonian (1) is Φ =
V −1

∫
V

ddxϕ(x) = L−dϕ0. As previously [4,5] ϕ is
decomposed as

ϕ(x) = Φ+ σ(x) (3)

where σ(x) includes all inhomogeneous modes

σ(x) = L−d
∑
k 6=0

ϕk eik·x. (4)

The order-parameter distribution function P (Φ) ≡
P (Φ, t, h, L) is defined by functional integration over σ,

P (Φ, t, h, L) = Z(h)−1

∫
Dσ e−H(h), (5)

where

Z(h) =
∫ ∞
−∞

dΦ
∫

Dσ e−H(h) (6)

is the partition function of system. This distribution
function depends also on the sharp cutoff Λ which im-
plies non-scaling finite-size effects [11,12]. From the order-
parameter distribution function P (Φ) we can calculate the
magnetization

M = 〈|Φ|〉 =
∫ ∞
−∞

dΦ |Φ|P (Φ). (7)

The functional integration over σ in equations (5, 6) can
only be done perturbatively [4–6]. Recently a novel ap-
proach was presented [7,8]. The main idea of this approach
is to extend the non-perturbative treatment of the k = 0
mode Φ [4–6] to all modes σk with k 6= 0. This implies

a non-perturbative treatment of the k 6= 0 modes with
non-Gaussian integrations over σk for each k 6= 0. Using
this approach the bare order-parameter distribution has
been derived previously at finite h (see (12-18) of Ref. [8])
for general n where n is the number of components of the
order-parameter.

In the present case (n = 1) the result can be written
in the form

P (Φ) = e−H
eff (Φ)/

∫ ∞
−∞

dΦ e−H
eff (Φ) (8)

where the (bare) effective Hamiltonian of the Ising-like
system reads

Heff(Φ) = H0(Φ, h)− 1
2

∑
m6=0

ln
{
Z1[y0m(r0L)]
Z1[y0m(r0)]

}
, (9)

H0(Φ, h) = Ld(
1
2
r0Φ

2 + u0Φ
4 − hΦ), (10)

with r0L = r0 + 12u0Φ
2 and y0m(r) = (2Ld/3u0)1/2(r +

4π2

L2 m2). The function Z1[y] in equation (9) is defined as

Z1[y] =
∫ ∞

0

ds s exp(−1
2
ys2 − s4). (11)

The non-Gaussian contributions enter via the the s4 term
of Z1[y]. Their contributions to averages such as M vanish
in the bulk limit L → ∞ above Tc (y > 0) but stabilize
P (Φ) below Tc (y < 0). In the both limits our order-
parameter distribution function P (Φ) becomes equivalent
to a one-loop approximation. At finite L, however, P (Φ)
provides a smooth interpolation between the one-loop re-
sults below and above Tc. Our previous experience and
comparison with Monte Carlo data at h = 0 [6,7] and
h 6= 0 [8] shows that the renormalized form of P (Φ) in
equations (12-22) below has good accuracy.

At this stage of the bare theory the h dependence en-
ters only via the term hΦ in H0, (10). In the renormalized
form of P (Φ) (to be presented in (12-22) below) the h de-
pendence will also enter through the h dependent choice
of the flow parameter. Application of (7-11) to the critical
region requires to renormalize the bare results. Using min-
imal renormalization at fixed dimension d < 4 [14] in the
limit Λ → ∞, we have previously derived the finite-size
scaling form of the order-parameter distribution function
for general n [7] at finite h [8]. In the present case (n = 1)
the previous result (see Eqs. (34-36) of Ref. [8]) is reduced
to

P (Φ, t, h, L) = Lβ/νp(hLβδ/ν , tL1/ν , ΦLβ/ν), (12)

where

p(x, q, z) =
exp[−F (x, q, z)]∫ ∞

−∞
dz exp[−F (x, q, z)]

, (13)
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with x = hLβδ/ν , q = tL1/ν , z = ΦLβ/ν and

F (x, q, z) = c2(x, q̂)ẑ2 + c4(x, q̂)ẑ4 − x z

− 1
2

∑
m6=0

ln
{
Z1[ym(r̃L(x, q̂, ẑ))]
Z1[ym(r̃L(x, q̂, 0))]

}
· (14)

Here q̂ = Q∗t(L/ξ0)1/ν and ẑ = (2Q∗)β(Φ/AM )(L/ξ0)β/ν
are dimensionless variables normalized by the asymptotic
amplitudes ξ0 and AM of the bulk correlation length ξ =
ξ0t
−ν at h = 0 above Tc and of the bulk order-parameter

Mbulk = AM |t|β at h = 0 below Tc. The bulk parameter
Q∗ is known [14]. The coefficients c2(x, q̂) and c4(x, q̂) read
for d = 3 (see Eqs. (40, 41) of Ref. [8] for n = 1)

c2(x, q̂) = (64πu∗)−1q̂ ˜̀(x, q̂)3−(2β+1)/ν(1 + 12u∗), (15)

c4(x, q̂) = (256πu∗)−1 ˜̀(x, q̂)3−4β/ν(1 + 36u∗), (16)

where u∗ is the fixed point value of the renormalized cou-
pling [14]. In three dimensions we have (see Eqs. (37, 38)
of Ref. [8])

ym(r̃L(x, q̂, ẑ)) = [6πu∗ ˜̀(x, q̂)]−1/2[r̃L(x, q̂, ẑ)˜̀(x, q̂)2

+ 4π2m2], (17)

r̃L(x, q̂, ẑ) = q̂ ˜̀(x, q̂)−1/ν + (3/2)˜̀(x, q̂)−2βν ẑ2. (18)

The auxiliary scaling function ˜̀(x, q̂) of the flow parameter
is determined implicitly by (see Eqs. (42, 43) of Ref. [8])

˜̀(x, q̂)3/2 = (4πu∗)1/2[ỹ(x, q̂) + 12ϑ2(ỹ(x, q̂), x̂)], (19)

ỹ(x, q̂) = (4πu∗)−1/2 ˜̀(x, q̂)3/2−1/ν q̂, (20)

x̂ = AM (2Q∗)−βξβ/ν0 (4πu∗)1/4
√

8˜̀(x, q̂)β/ν−3/4x,
(21)

where

ϑ2(ỹ, x̂) =

∫ ∞
0

ds s2 cosh(x̂s) exp(−1
2
ỹs2 − s4)∫ ∞

0

ds cosh(x̂s) exp(−1
2
ỹs2 − s4)

· (22)

The latter equation is the reduced form of equa-
tion (27) of reference [8] for n = 1. The h de-
pendence of P (Φ, t, h, L) enters explicitly via the term
−x z in (14) and implicitly (via the x dependence
of c2, c4 and r̃L) through the x dependence of the
scaling function ˜̀(x, q̂)3/2, (19), of the flow parame-
ter. For a discussion of the appropriate choice of the
flow parameter see reference [8]. From equations (7, 12)
we obtain the scaling form

M(h, t, L) = L−β/νfM(hLβδ/ν , tL1/ν), (23)

fM(x, q) =

∫ ∞
−∞

dz|z| exp[−F (x, q, z)]∫ ∞
−∞

dz exp[−F (x, q, z)]
· (24)

Correspondingly the asymptotic equation of state for a
finite Ising-like system in the limit of zero lattice spac-
ing [12] can be written as

h/M δ = f(hLβδ/ν, t/h1/βδ) (25)

where

f(x, y) = x/fM(x, yx1/βδ)δ. (26)

In the comparison with the MC data of the simple-cubic
(sc) Ising model in Section 4, the quantities h, M and L
are used in a dimensionless form in units of the lattice
constant (see Sect. 4 of Ref. [9]). We have taken the bulk
parameters u∗ = 0.0412, Q∗ = 0.945 from reference [6].
From reference [15] we have taken the bulk amplitudes
ξ0 = 0.495, AM = 1.71 in units of the lattice constant
(of the sc Ising model) and the bulk critical exponents
β = 0.3305, ν = 0.6335. Thus our determination of the
scaling function f(x, y) does not require a new adjustment
of nonuniversal parameters.

Taking the limit hLβδ/ν → ∞ at fixed t/h1/βδ, we
obtain the scaling form of the bulk equation of state

h/M δ = fb(t/h1/βδ) = f(∞, t/h1/βδ). (27)

At T = Tc we find from equations (23-27)

h/M δ ≡ Dc = f(∞, 0) = 0.202 (28)

in three dimensions (in units of the lattice constant). In
the subsequent sections our theoretical predictions will be
compared with MC data for the three-dimensional Ising
model.

3 Monte Carlo simulation

Standard heat bath techniques were used for the Glauber
kinetic Ising model, with multi-spin coding (16 spins in
each 64-bit computer word). Since the effect could be seen
best in lattices of intermediate size L ' 80 for L× L× L
spins, memory requirements were tiny and only trivial par-
allelization by replication, not by domain decomposition,
was used. However, thousands of hours of processor time
were needed in order for us to see the non-monotonic ef-
fects clearly in our figure if h/M δ is plotted. The exponent
δ is nearly five and thus five percent accuracy in h/M δ

requires one percent accuracy in the directly simulated
magnetization M .

In earlier simulations by the same author and algo-
rithm [16] possible non-monotonic effects at T = Tc were
not noticed because these simulations were primarily per-
formed to study the bulk behaviour; at that time the
field-theoretical predictions presented above were not yet
known. But even if they had been known it is doubtful that
with the Intel Paragon used in [16] instead of the Cray-
T3E now the non-monotonic trends would have been seen
in about the same computer time.

Because of the limited system size, errors in the mag-
netization of order 1 + const/Lβ/ν ' 1 + const/

√
L are

expected; in light of these errors the agreement to be pre-
sented now is surprisingly good.
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Fig. 1. Scaling plot (in units of the lattice constant, see Ref. [9]) of h/Mδ versus x = hLβδ/ν below Tc with (a) t/h1/βδ = −1.0,
(b) t/h1/βδ = 0 (that means T = Tc), (c) t/h1/βδ = 1.0, and (d) t/h1/βδ = 1.6. Monte Carlo data for L = 32 and 80. Solid line
is the theoretical prediction equations (23-26); no Monte Carlo data are shown in part (d), where h/Mδ is a monotonic function
of external field x = hLβδ/ν .

4 Results and discussion

Figure 1 compares our Monte Carlo results for 323 and
803 spins with our theoretical predictions (Eqs. (23-26)),
and shows good quantitative agreement; below Tc a pro-
nounced peak is seen in the scaling function (Fig. 1a), at
Tc it is somewhat weaker (Fig. 1b), above Tc it is barely
visible (Fig. 1c), and far above Tc (Fig. 1d) it has vanished.
The simulations, which at T = Tc have an accuracy of the
order of one and five percent for L = 32 and 80, respec-
tively, agree nicely with the theoretical predictions within
the error bars of the MC data. (Far above Tc therefore no
simulations were made.)

Thus, if one tries to determine the bulk critical ampli-
tude of h/M δ at the critical isotherm, then with varying
L at a fixed field one first gets a too small value (left bor-
der of the figures), then a too high value (peak), and then
a roughly correct value (plateau in the right part of the
figure).

These non-monotonicities do not vanish if we take the
lattices large enough. They are part of the asymptotic scal-

ing function and thus whatever lattice size L we take there
will be a field h ∝ 1/Lβδ/ν where h/M δ has a maximum
and near which it thus varies non-monotonically with L.

We also tested the prediction of [11,12] that for fixed
T < Tc the leading finite-size deviation from the bulk
value of M should vanish exponentially in L, and not with
a power law ∝ 1/Ld (as predicted by perturbation the-
ory based on the separation of the zero-mode [4–7,13]).
Figure 2a shows again non-monotonic behaviour, in both
three and five dimensions. But only in three dimensions
these data are accurate enough to distinguish between
a tail varying exponentially and one ∝ 1/Ld; Figure 2b
clearly supports the theoretically predicted [11,12] ex-
ponential variation. (These three-dimensional data were
taken with Ito’s fast algorithm [19].) Similarly, on the
d = 2 square lattice at T/Tc = 0.99, the exponential
approach ∝ exp(−L/18) towards the bulk magnetization
fitted better than a L−2 power law, as shown in Figure 2c.

In order to make contact with d = 3 bulk properties we
also used simulations at the critical isotherm with 12923
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Fig. 2. (a) Monte Carlo data for the spontaneous magnetization in units of the lattice constant in three (diamonds and pluses)
and five (square) dimensions at T/Tc = 0.99, versus linear lattice size L. The horizontal line M = 0.3671 for three dimensions
is determined from L = 2496. (b) Selected three-dimensional data from part (a) are shown as M(L =∞)−M(L) versus L in a
semilogarithmic plot. The straight line represents an exponential decay [11,12], the two curved lines are power law decays 1/L2

and 1/L3 which fail to fit the data. The five-dimensional data of part (a) were not accurate enough to distinguish between an
exponential and a 1/L5 decay. (c) Two-dimensional simulations (128 lattices for 10 million iterations each) in a semi-logarithmic
representation at T/Tc = 0.99. The straight line varies proportionally to exp(−L/18) and fits much better than the curve∝ 1/L2.

spins [16]. From the simulations we obtain the bulk value
of h/M δ as Dc = 0.21± 0.02. Our field-theoretic result in
equation (28) is in very good agreement with this value.

It is interesting to compare our simulation result also
with other bulk theories. From series expansion Zinn and
Fisher [18] obtained Cc = 0.299 for the amplitude of the
bulk susceptibility at the critical isotherm χ = Cc|h|−γ/βδ
with γ = 1.2395, ν = 0.6320. This leads to Dc = 0.182
according to the relation Dc = (Ccδ)−δ.

Dc is also contained in the universal combination of
amplitudes [17]

Rχ = ΓDcA
δ−1
M (29)

where Γ is the amplitude of the bulk susceptibility χ =
Γt−γ above Tc at h = 0 and AM is the amplitude of

the spontaneous magnetization Mbulk = AM |t|β below Tc.
Using ϕ4 field theory at d = 3 dimensions Guida and Zinn-
Justin [1] have obtained Rχ = 1.649. They also used the
ε = 4 − d expansion and obtained Rχ = 1.674 at ε = 1.
Using these values for Rχ and the high-temperature series
expansion results [15] Γ = 1.0928, AM = 1.71 and δ =
(dν + γ)/(dν − γ) with γ = 1.2395, ν = 0.6335, we obtain
from equation (29) Dc = 0.205 (d = 3 field theory) and
Dc = 0.202 (ε-expansion), respectively, in good agreement
with our theoretical result, equation (28), and with our
MC simulation.

In summary, our simulations confirmed a posteriori
our theoretical predictions of Section 2 for the asymp-
totic finite-size effects in the three-dimensional Ising
model. The agreement in Figure 1 is remarkable in view
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of the fact that the non-universal parameters of the theory
were adjusted only to bulk parameters of the Ising model
at h = 0 and not to any finite-size MC data.

Note added in proof

Improved simulations for five dimensions give for 7 ≤ L ≤
13 better agreement with an exponential size dependence
than with one ∝ 1/L5.
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